Behind the Buzz: Exploring the Challenges of High-Speed 3D Printing

Behind the Buzz: Exploring the Challenges of High-Speed 3D Printing

High-speed continuous 3D printing has captured a lot of attention in recent years, and basically the method is an upgraded approach to Digital Light Processing (DLP) technology.

With continuous printing, light can cure photosensitive polymers without being interrupted, as the build plate constantly moves in the Z direction – this results in high-speed 3D printing, without using as many supports and many other benefits.

But this method of 3D printing also comes with some serious challenges, which is the subject of a recently published white paper on the subject, The Ultimate Guide to High-Speed 3D Printing with Continuous Technology.”

While many people know the benefits of continuous 3D printing, including speed and theoretically isotropic parts, this paper takes a deeper dive into the “dead zone” that is so critical to continuous 3D printing.

The dead zone is an area where oxygen and photopolymer commingle. Because oxygen inhibits polymerization, nothing cures in the the dead zone, which allows for 3D printing in free space right above the dead zone.

However, adding oxygen to the build area also distorts the build surface, essentially creating an air balloon at the bottom of the build tray.

Source: 3DPrint.com